Denver Fire Department Protocols

Table of Contents

<table>
<thead>
<tr>
<th>General Guidelines</th>
<th>Trauma Protocols</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definition of a patient</td>
<td>General Trauma Care</td>
</tr>
<tr>
<td>Alternate Disposition</td>
<td>Trauma in Pregnancy</td>
</tr>
<tr>
<td>DOA/Pronouncement</td>
<td>Traumatic Pulseless Arrest</td>
</tr>
<tr>
<td>Refusal</td>
<td>Amputations</td>
</tr>
<tr>
<td>CARES Van</td>
<td>Head Trauma</td>
</tr>
<tr>
<td>Code 10 Ambulance Request</td>
<td>Face and Neck Trauma</td>
</tr>
<tr>
<td>Documentation Requirements</td>
<td>Spinal Trauma</td>
</tr>
<tr>
<td>Mass Casualty Incident</td>
<td>Spinal Precautions</td>
</tr>
<tr>
<td>Glasgow Coma Score (GCS)</td>
<td>Chest Trauma</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Procedures</th>
<th>AED</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLS Airway Sequence/Adjuncts</td>
<td>Tourniquet</td>
</tr>
<tr>
<td>Splinting</td>
<td>Assist: 12 Lead EKG</td>
</tr>
<tr>
<td>AED</td>
<td>Assist: CPAP</td>
</tr>
<tr>
<td>Tourniquet</td>
<td>Assist: Capnography</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Respiratory Protocols</th>
<th>Obstructed Airway</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obstructed Airway</td>
<td>Adult Universal Respiratory Distress</td>
</tr>
<tr>
<td>Adult Universal Respiratory Distress</td>
<td>Adult Wheezeing</td>
</tr>
<tr>
<td>Adult Wheezeing</td>
<td>CHF/Pulmonary Edema</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cardiac Protocols</th>
<th>Universal Pulseless Arrest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Universal Pulseless Arrest</td>
<td>Universal Pulseless Arrest Considerations</td>
</tr>
<tr>
<td>Universal Pulseless Arrest Considerations</td>
<td>Neonatal Resuscitation</td>
</tr>
<tr>
<td>Neonatal Resuscitation</td>
<td>Post-Resuscitation Care with ROSC</td>
</tr>
<tr>
<td>Post-Resuscitation Care with ROSC</td>
<td>Chest Pain, Possibly Cardiac</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>General Medical Protocols</th>
<th>Obstetric Protocols</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Medical Care</td>
<td>Childbirth</td>
</tr>
<tr>
<td>Syncope</td>
<td>Obstetrical Complications</td>
</tr>
<tr>
<td>Allergy and Anaphylaxis</td>
<td>Suspected Carbon Monoxide Exposure</td>
</tr>
<tr>
<td>Suspected Carbon Monoxide Exposure</td>
<td>Epistaxis Management</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Environmental Protocols</th>
<th>Medications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drowning</td>
<td>Albuterol Sulfate</td>
</tr>
<tr>
<td>Hypothermia</td>
<td>Aspirin</td>
</tr>
<tr>
<td>Hyperthermia</td>
<td>Epinephrine</td>
</tr>
</tbody>
</table>

	Narcan
	Nitroglycerine
	Oral Glucose
	Oxygen
	Phenylephrine
GENERAL GUIDELINES: PATIENT DETERMINATION: “PATIENT OR NO PATIENT”

Would a reasonable lay person consider this encounter a provider patient relationship?

- **Yes**
 - Person is a minor (Age < 18)
 - **No**
 - Person lacks decision making capacity (see adjacent)
 - **No**
 - Acute illness or injury suspected based on appearance MOI, etc.
 - **Yes**
 - Person has a complaint resulting in a call for help
 - **Yes**
 - 3rd party caller indicates individual is ill, injured or gravely disabled
 - **Yes**
 - Individual meets the definition of a Patient (PCR required)
 - **No**
 - **No**
 - **No**
 - **No**
 - **Yes**
 - **Yes**
 - **Yes**
 - **No**

- **No**
 - Person does not meet the definition of a patient, and does not require a PCR or refusal of care

General Guidelines

This protocol is intended to refer to individual patient contacts. In the event of a multiple party incident, such as a multi-vehicle collision, it is expected that a reasonable effort will be made to identify those parties with acute illness or injuries. Adult patients indicating that they do not wish assistance for themselves or dependent minors in such a multiple party incident do not necessarily require documentation as patients.

No protocol can anticipate every scenario and providers must use best judgment. When in doubt as to whether an individual is a “patient”, err on the side of caution and perform a full assessment and documentation.

Decision-Making Capacity
(Must meet all criteria)

- Understands nature of illness or injury
- Understands consequences of refusal of care
- Not intoxicated with drugs or alcohol
- No criteria for a Mental Health Hold:
 - Not homicidal or suicidal
 - Not gravely disabled or psychotic
 - Not a danger to self or others
FIELD PRONOUNCEMENT GUIDELINES

Purpose

A. To provide guidelines for resuscitation and field pronouncement of patients in cardiac arrest in the prehospital setting

General Principles

A. Base contact must be made for all patients who fall within this guideline
B. Attempt resuscitation for all patients found pulseless and apneic, unless any of the following are present:
 1. Physician orders as specified on the Colorado Medical Orders for Scope of Treatment (MOST) form: “No CPR. Do Not Resuscitate/DNR/Allow Natural Death”, present with the patient
 2. A valid CPR directive present with the patient
 3. Dependent lividity or rigor mortis
 4. Decomposition
 5. Decapitation
 6. Evidence of massive blunt head, chest, or abdominal trauma
 7. Third degree burns over more than 90% of the total body surface area

After pronouncement, do not alter condition in any way or remove equipment as the patient is now a potential coroner’s case.
GENERAL GUIDELINES: PATIENT NON-TRANSPORT OR REFUSAL

Dispatch

- Cancelled PTA
- Arrived on scene

Not a patient (see Patient Determination)

Patient

- EMS Transport
- No transport

Base contact for refusal

A person who has decision-making capacity may refuse examination, treatment and transport

A person has decision making capacity sufficient to refuse treatment and transport if he or she:

- Understands nature of illness or injury; and
- Understands the risks of refusing treatment or transport; and
- Given the risks and options, voluntarily refuses treatment or transport

Documentation Requirements for Refusal

- Confirm decision-making capacity
- EMS assistance offered and declined
- Risks of refusal explained to patient
- Patient understands risks of refusal
- Name of Base Station physician authorizing refusal of care unless standing order refusal

Base contact refusal

Required for

- Any patient 5 years or younger who is not being transported via ambulance regardless of the complaint
- Any patient under 18 years of age who does not have a parent/legal guardian present
- Any patient considered to be high risk

***You do NOT have to contact base for minor(s) 6-18 that have a parent or guardian present and are not deemed high risk.

***Any minor with ANY complaint or injury should be considered a patient
GENERAL GUIDELINES: CARES Detox van transport

Person is a minor? (Age ≤ 18)

Yes

Vital signs are within normal limits

No

Acute illness or injury suspected based on appearance, MOI, etc.

Yes

Evidence of only ETOH intoxication (See adjacent)

No

3rd party caller indicates individual is ill, injured or gravely disabled

Yes

Person is a patient and meets the criteria for detox transport

No

Individual requires further evaluation and should be transported

General Guidelines

No protocol can anticipate every scenario and providers must use best judgment. When in doubt as to whether individual is a “patient”, err on the side of caution continue assessment and transport for further evaluation

Evidence of ETOH intoxication

- Odor of intoxicants
- Slurred speech
- Ataxic gait

In the case where the party is being transported by Denver Cares, they must be able to enter the detox van with little to no assistance. The party must not require constant (home) O2 therapy, and must not require the use of a wheelchair or other powered mobility device.
CODE 10 AMBULANCE RESPONSE

- Consider scene safety
- Consider nature of injury or illness
- Consider need for additional resources

General impression
Assess airway, breathing and circulation
Perform a rapid medical assessment
Obtain a SAMPLE history
Obtain vital signs

- Patient outcome will be adversely affected by waiting on scene for a non-emergent ambulance
- Provider and patient safety would be compromised by waiting for a non-emergent ambulance

Yes?
Request and confirm code 10 ambulance response

No?
Code 9 ambulance is appropriate
All patient encounters require documentation of the following

- Patient name
- Date of Birth

Description of:

- Assessment and Treatment
- Vital Signs

Description of base contact if applicable

Description of Disposition
Purpose:

To utilize a frame work for consistent management of mass casualty incidents. This protocol will be used on all incidents with multiple patients to provide for efficient and consistent management.

Definition:

An MCI is an incident which generates more patients than available resources can handle using routine procedures.

Policy:

A. Triage: Responsible for implementing START triage and routing patients to appropriate treatment area.

B. Once EMS Operations establishes section leaders for Triage, Transport and Staging assist them with patient movement, etc.

C. **Do not load patients into ambulances without specific direction from EMS**

Triage Designations

A. First priority (**Red**): Immediate

B. Second priority (**Yellow**): Delayed

C. Third priority (**Green**): Minor

D. Fourth priority (**Black**): Deceased
Glasgow Coma Score

(Minimum 3, Max 15)

Eyes:
4 Opens eye spontaneously
3 Opens eyes to voice
2 Opens eyes to pain
1 Does not open eyes

Verbal:
5 Oriented
4 Confused, disoriented
3 Inappropriate words
2 Incomprehensible sounds
1 No sounds

Motor:
6 Obeys commands
5 Localizes pain
4 Withdrawal to painful stimuli
3 Flexion to painful stimuli
2 Extension to painful stimuli
1 No movement
Airway Management: Opening the Airway

Indications
A. Inadequate air exchange in the lungs, due to jaw or facial fracture, causing narrowing of air passage
B. Lax jaw or tongue muscles causing airway narrowing in the unconscious patient
C. Noisy breathing or excessive respiratory effort that could be due to partial obstruction

Precautions
A. For trauma victims, keep neck midline and avoid flexion, extension, traction or rotation.
B. For medical patients, neck extension may be difficult in elderly persons with extensive arthritis and little neck motion. Do not use force – jaw thrust or chin lift without head tilt will be more successful.
C. All airway maneuvers should be followed by an evaluation of their success; if breathing is still labored, a different method or more time for recovery may be needed.
D. Children’s airways have less supporting cartilage

Technique
A. Use BSI. To open the airway initially, chose method best suitable for patient.
B. Assess ventilation
C. Begin BVM ventilation if patient is not breathing
D. Relieve partial or complete airway obstruction if present
E. Assess oxygenation; use supplemental O2 as needed.
F. Consider positioning the patient on side (if medical problem)
G. Choose method to maintain airway patency until ALS arrives

OROPHARYNGEAL AIRWAY: Preferred adjunct if patient is obtunded
1. Choose size by measuring from mouth to ear margin.
2. Depress tongue with tongue blade, or insert gently with curving point UPWARD. Avoid snagging posterior tongue or palate.
3. Insert to back of tongue, then turn to follow curve of airway.
4. Move gently to be sure the tip is free in the back of the pharynx. In pediatric patients, depress tongue and insert airway with curve down to avoid injury to palate and pushing tongue posterior.
5. Remove airway adjunct if patient begins to vomit.

NASOPHYNGEAL AIRWAY:
1. Choose a size by measuring from the nostril to the earlobe.
2. Lubricate tube (K-Y Jelly)
3. Insert in largest nostril, along floor of nose until flange is seated at nostril. Keep curve in line with normal airway curve. If you meet resistance try the other side.

H. Listen to breathing to be sure maneuver has resolved the problem.
I. Resume ventilatory assistance or oxygenation as appropriate.
EXTREMITY SPLINTING

Indications

A. Pain, tenderness, swelling, or deformity in extremity which may be due to fracture or dislocation

B. In an unstable extremity injury, to reduce pain, limit bleeding at the site of injury, and prevent further injury to soft tissues, blood vessels or nerves

Precautions

A. Critically injured trauma patients should be packaged on a backboard and prepared for transport

B. Make sure the obvious injury is the only one. It is particularly easy to miss fractures proximal to the most visible one

C. In a stable patient where no environmental hazard exists, splinting should be done prior to moving the patient

Technique

Extremity Splinting

A. Check pulse and sensation distally prior to moving or splinting

B. Remove bracelets, watches and other constricting bands prior to splint application

C. Identify and dress open wounds

D. Choose splint to immobilize joint above and below injury

E. Apply gentle continuous traction to extremity and support fracture during splinting

F. Reduce angulated fractures (if no pulses), including open fractures, with gentle axial traction as needed to immobilize properly

G. Check distal pulses and sensation after splinting. Realign gently if adequate circulation and sensation is lost

Traction Splinting (for suspected femur fracture)

A. Remove sock and shoe and check for distal pulse and sensation

B. Identify and dress open wounds

C. Measure splint length prior to application

D. Apply gentle axial traction with support to calf and fracture site

E. Position ischial pad under buttocks, up against bony prominence (ischial tuberosity), empty patient pockets if necessary

F. Secure groin strap carefully

G. Maintain continuous traction and support fracture site throughout procedure
EXTREMITY SPLINTING

H. Adjust support straps to appropriate positions under leg

I. Apply ankle hitch and tighten traction until patient experiences improved comfort. (Movement at the fracture site will cause some pain, but if traction continues to cause increased pain, do not proceed. Splint and support leg in position of comfort.)

J. Secure support straps after traction is properly adjusted

K. Re-check distal pulses and sensation

Complications

A. Circulatory compromise from excessive constriction of limb

B. Continued bleeding non visible under splint

C. Pressure damage to skin and nerves from inadequate padding

D. Delayed treatment of life-threatening injuries due to prolonged splinting procedures

Side Effects and Special Notes

A. Traction splints should only be used if the leg can be straightened easily and the patient is comfortable with the traction device on. Particularly with injuries about the hip and knee, forced application for traction can cause increased pain and damage. If this occurs, do not use traction device, but support in position of most comfort and best neurovascular status.

B. When in doubt and the patient is stable splint. Do not be deceived by absence of deformity or disability.

C. Splinting body parts together can be a very effective way of immobilizing. Padding will increase comfort.
Automatic External Defibrillator

Indications
A. For unconscious, pulseless and apneic patients

Precautions
A. Do not use on trauma patients
B. Dry the chest wall if wet
C. Remove any transdermal patches
D. If an airway obstruction exists, clear the airway before using an AED
E. Remove/Extricate the patient from any wet environment prior to application.

Technique
A. Follow manufacturer directions for AED operation.
 1. Determine unresponsiveness
 2. Open airway, check for breathing and ventilate once with BVM if no respirations
 3. Determine pulselessness. If patient pulseless, begin CPR while AED is being set up.
 4. Turn on AED
 5. Place patches in appropriate location based on manufacturer’s guidelines and connect to machine
 6. Clear the area around the patient making sure no one is touching the patient
 7. Press the shock button if advised, check breathing, pulse and if necessary, begin CPR. If there is a pulse, check breathing and assist as needed.

Complications
A. Rescuer defibrillation may occur if you forget to clear the area
B. Skin burns from inadequate contact between patches and skin may occur
C. Expired AED patches can cause arcing from electricity or inadequate shock and interfere with analysis.
D. Children over age 8 can be treated with a standard AED. For children ages 1-8, AHA recommends the pediatric attenuated pads. Or anterior posterior adult pad placement.
PROCEDURE PROTOCOL: TOUJNIQUET PROTOCOL

Indications:

A. A tourniquet may be used to control potentially fatal hemorrhage only after other means of hemorrhage control have failed.

Precautions:

A. A tourniquet applied incorrectly can increase blood loss.
B. Applying a tourniquet can cause nerve and tissue damage whether applied correctly or not. Proper patient selection is of utmost importance.
C. Injury due to tourniquet is unlikely if the tourniquet is removed within 1 hour. In cases of life-threatening bleeding benefit outweighs theoretical risk.
D. A commercially made tourniquet is the preferred tourniquet. If none is available, a blood pressure cuff inflated to a pressure sufficient to stop bleeding is an acceptable alternative. Other improvised tourniquets are not allowed.

Technique:

A. First attempt to control hemorrhage by using direct pressure over bleeding area.
B. If a discrete bleeding vessel can be identified, point pressure over bleeding vessel is more effective than a large bandage and diffuse pressure.
C. If unable to control hemorrhage using direct pressure, apply tourniquet according to manufacturer specifications and using the steps below:
 1. Cut away any clothing so that the tourniquet will be clearly visible. NEVER obscure a tourniquet with clothing or bandages.
 2. Apply tourniquet proximal to the wound and not across any joints.
 3. Tighten tourniquet until bleeding stops. Applying tourniquet too loosely will only increase blood loss by inhibiting venous return.
 4. Mark the time and date of application on the patient’s skin next to the tourniquet.
 5. Keep tourniquet on throughout hospital transport – a correctly applied tourniquet should only be removed by the receiving hospital.
PROCEDURE PROTOCOL: ASSIST 12 LEAD EKG

Indication:
- Patient requires a 12 lead EKG, at the discretion of the ALS provider
- EKGs deliver a picture of the heart’s electrical activity. This information allows for interpretation of cardiac rhythms, myocardial ischemia/infarction, conduction delays, electrolyte imbalances, and other cardiac abnormalities.

Technique:
- Connect leads with electrodes
- Expose chest
- Place 4 limb leads (RU, LU, RL, LL); do not place on bone
- Place 6 precordial leads (V1-V6)
 - V1: 4th intercostal space, right of sternum
 - V2: 4th intercostal space, left of sternum
 - V3: Between V2 and V4
 - V4: 5th intercostal space, left midclavicular line
 - V5: 5th intercostal space, left anterior axillary line
 - V6: 5th intercostal space, left midaxillary line
- Connect precordial lead cable to limb lead cable
- Press “12-LEAD” on LifePak Monitor
- Select patient’s gender and age using black turn dial, when prompted

Precautions:
- A 12 lead EKG can feel invasive to a patient. When possible, inform patient of procedural steps and procure an appropriate work-up site (with consideration for patient modesty and at the direction of the ALS provider).
- Patient movement can inhibit 12 lead interpretation. Instruct the patient to remain still. If excessive artifact exists (at discretion of ALS provider), consider adjusting limb lead placement to a more proximal position.

Special Considerations:
- If patient heart rate is tachycardic, bradycardic, or irregular:
- Obtain a detailed history: patient or family history of cardiac disease, presence of cardiac medications, compliance with cardiac medications
- Search for possible contributing factors: “5 Hs and 5 Ts”
- ALS assessment is indicated

Common Cardiac Medications:
- Antiplatelet agent (eg. ASA, Plavix)
- Anticoagulant (eg. Coumadin, Heparin, Eliquis, Xarelto, Pradaxa)
- Beta blocker (“-olol”)
- Calcium channel blocker (“-pine”)
- ACE inhibitor (“-pril”)
- Angiotensin-Receptor Blocker (“-artan”)
- Diuretic (eg. Lasix, HCTZ)
- Vasodilator (eg. Nitrates)
PROCEDURE PROTOCOL: CONTINUOUS POSITIVE AIRWAY PRESSURE (CPAP)

Indications:
- Patient requires CPAP, at the discretion of the ALS provider
- CPAP provides continuous positive pressure during spontaneous respiration, forcing air into the alveoli and improving oxygenation and ventilation.

Contraindications:
- Respiratory or cardiac arrest
- Systolic BP less than 90mmHg
- Lack of airway protective reflexes
- Significant altered level of consciousness such that unable to follow verbal instructions or signal distress
- Vomiting or active upper GI bleed
- Suspected pneumothorax
- Trauma
- Patient size or anatomy prevents adequate mask seal

Technique:
1. Place patient in a seated position and explain the procedure to him or her
2. Assess vital signs (BP, HR, RR, SpO2, and ETCO2)
3. Apply the CPAP mask and secure with provided straps, progressively tightening as tolerated to minimize air leak
4. Operate CPAP device according to manufacturer specifications
5. Start with the lowest continuous pressure that appears to be effective. Adjust pressure following manufacturer instructions to achieve the most stable respiratory status utilizing the signs described below as a guide
6. Monitor patient continuously, record vital signs every 5 minutes.
7. Assess patient for improvement as evidenced by the following:
 a. Reduced dyspnea
 b. Reduced verbal impairment, respiratory rate and heart rate
 c. Increased SpO2
 d. Stabilized blood pressure
 e. Appropriate ETCO2 values and waveforms
 f. Increased tidal volume
8. Observe for signs of deterioration or failure of response to CPAP:
 a. Decrease in level of consciousness
 b. Sustained or increased heart rate, respiratory rate or decreased blood pressure
 c. Sustained low or decreasing SpO2 readings
 d. Rising ETCO2 levels or other ETCO2 evidence of ventilatory failure
 e. Diminished or no improvement in tidal volume

Precautions:
- Should patient deteriorate on CPAP:
 o Alert ALS provider
 o Troubleshoot equipment
 o Assess for possibility of hypotension due to significantly reduced preload from positive pressure ventilation
- Some fixed pressure CPAP devices do not have FiO2 adjustment and will only administer up to 30% oxygen. If no improvement in oxygenation with a fixed pressure CPAP device, consider adding supplemental oxygen.
PROCEDURE PROTOCOL: CAPNOGRAPHY

Indications:
- Patient requires capnography, at the discretion of the ALS provider
- Capnography measures the amount of CO₂ in exhaled air. It is used to assess ventilation, which reflects respiratory status, disease etiology, response to treatment, and metabolic state.

Contraindications:
A. None

Technique:
A. In patient with ETT or advanced airway: place ETCO₂ detector in-line between airway adaptor and BVM after airway positioned and secured
B. Patients without ETT or advanced airway in place: place ETCO₂ cannula on patient. May be placed under CPAP or NRB facemask

Precautions:
A. To understand and interpret capnography, remember the 3 determinants of ETCO₂:
 1. Alveolar ventilation
 2. Pulmonary perfusion
 3. Metabolism
B. Sudden loss of ETCO₂:
 1. Tube dislodged
 2. Circuit disconnected
 3. Cardiac arrest
C. High ETCO₂ (> 45):
 1. Hypoventilation/CO₂ retention
D. Low ETCO₂ (< 25):
 1. Hyperventilation
 2. Low perfusion: shock, PE, sepsis
E. Cardiac Arrest:
 1. In low-pulmonary blood flow states, such as cardiac arrest, the primary determinant of ETCO₂ is blood flow, so ETCO₂ is a good indicator of quality of CPR
 2. If ETCO₂ is dropping, change out person doing chest compressions
 3. In cardiac arrest, if ETCO₂ not > 10 mmHg after 20 minutes of good CPR, this likely reflects very low CO₂ production and is associated with poor outcome
 4. Sudden rise in EtCO₂ may be an indicator of ROSC
OBSTRUCTED AIRWAY

Attempt to determine cause of obstruction

Does patient show universal sign of choking?

Yes

- Perform abdominal thrusts
- For visibly pregnant or obese patients perform chest thrusts only

No

Assess severity of obstruction

Severe or Complete Obstruction (mute, silent cough, severe stridor)

- Open airway with head tilt-chin lift or jaw thrust if craniofacial trauma
- Attempt ventilation with BVM

Unconscious Patient

Begin chest thrusts

Each time airway is opened look in mouth for FB and if found, remove it

Able to ventilate or obstruction cleared?

Yes

- Do not interfere with a spontaneously breathing or coughing patient
- Position of comfort
- Administer O2, if indicated
- Suction if needed

No

Once obstruction relieved:

- Position of comfort or left lateral recumbent position
- Administer O2, if indicated
- Monitor ABCs, vital signs
- Suction PRN and be prepared for vomiting, which commonly occurs after obstruction relieved
- ALS assessment is indicated

Mild or Moderate Obstruction

- Supportive care
- If patient deteriorating or develops worsening distress proceed as for complete obstruction
- ALS assessment is indicated

Is obstruction cleared?

Yes

No

- For visibly pregnant or obese patients perform chest thrusts instead
- Consider chest thrusts in any patient if abdominal thrusts are ineffective

Able to ventilate or obstruction cleared?

No

- Perform abdominal thrusts or chest thrusts until obstruction relieved then reattempt ventilations with BVM

- For infants, 5 chest thrusts then 5 back blows

- ALS assessment is indicated
ADULT UNIVERSAL RESPIRATORY DISTRESS

Consider pulmonary and non-pulmonary causes of respiratory distress:
- Pulmonary embolism
- Pneumonia
- Heart attack
- Pneumothorax
- Sepsis
- Metabolic acidosis (e.g.: DKA)
- Anxiety

Mixed picture may exist
- Goal is maximization of oxygenation and ventilation in all cases
- CPAP (placed at direction of EMS) may be particularly useful in mixed picture with hypoxia and/or hypoventilation
- Avoid albuterol in suspected pulmonary edema

For all patients:
While assessing ABCs: give supplemental O₂, monitor vital signs

Respiratory Distress

For all patients:
While assessing ABCs: give supplemental O₂, monitor vital signs

Patent airway?
- Yes
- No

Obstructed Airway protocol

Are ventilations adequate for physiologic state?
- Yes
- No

Assist ventilations with BVM and airway adjuncts as needed

Is anaphylaxis likely?
- Yes
- No

Allergy/Anaphylaxis protocol

Is asthma or COPD likely?
- Yes
- No

Adult Wheezing protocol

Is CHF/pulmonary edema likely?
- Yes
- No

CHF/Pulmonary Edema protocol

- ALS assessment is indicated
- Provide supportive care
- Maximize oxygenation and ventilation
- Contact Base if needed for consult
ADULT WHEEZING

Therapeutic Goals:
- Maximize oxygenation
- Decrease work of breathing
- Identify complications, e.g. pneumothorax

Consider pulmonary and non-pulmonary causes of respiratory distress:
Examples: pulmonary embolism, pneumonia, pulmonary edema, anaphylaxis, heart attack, pneumothorax, sepsis, metabolic acidosis (e.g.: DKA), Anxiety
- Wheezing may be a presentation of pulmonary edema, "cardiac asthma"
- Albuterol should be used with caution in patients with a known hx of CHF

COPD
- **Correct hypoxia:** do not withhold maximum oxygen for fear of CO₂ retention
- Patients with COPD are older and have comorbidities, including heart disease.
- Common triggers for COPD exacerbations include: Infection, dysrhythmia (e.g.: atrial fibrillation), myocardial ischemia

Presentation suggests Bronchospasm:
Wheezing, prolonged expiratory phase, decreased breath sounds, accessory muscle use, known hx of asthma/COPD

Adult Respiratory Distress Protocol

Administer O₂

EMT may administer either MDI or nebulized albuterol with base contact for verbal order

Is response to treatment adequate?

- **Yes**
 - Reassess for pneumothorax
 - Assist ALS with CPAP placement, if indicated
 - If ALS/CPAP are unavailable, consider BVM ventilation

- **No**
 - Continue monitoring and assessment
 - Be prepared to assist ventilations as needed
 - Contact base for medical consult as needed

ALS assessment is indicated
CHF/PULMONARY EDEMA

Universal Respiratory Distress Protocol

CHF/Pulmonary edema

Administer O₂

Is oxygenation and ventilation adequate?

No

Assist ALS with CPAP, if instructed

Yes

Is response to treatment adequate?

No

If failing above therapy:
- Ventilate with BVM
- Consider pneumothorax
- Consider alternative diagnoses/complications

Yes

- Continue monitoring and assessment
- Contact base for medical consult as needed
- ALS assessment is indicated

Therapeutic Goals:
- Maximize oxygenation
- Decrease work of breathing
UNIVERSAL PULSELESS ARREST ALGORITHM

Pulseless Arrest

Move patient to a workable space, ideally:
- With 4 feet on all sides
- In 60 seconds or less

- Initiate chest compressions
- Attach AED
- Deliver oxygen

Perform rhythm check every two minutes, ideally:
- Using AED
- Switching compressors
- Pausing for ≤ 5 seconds

- Follow AED prompts, resuming compressions as quickly as possible

- Radio communication: Alert incoming crews CPR is in progress

- Consider reversible causes (“Hs & Ts”)
- If ROSC, begin post-cardiac arrest care
- ALS assessment is indicated

Reversible Causes:
- Hypovolemia
- Hypoxia
- Hydrogen ion (acidosis)
- Hypo/hyperkalemia
- Hypothermia
- Tension pneumothorax
- Tamponade, cardiac
- Toxins
- Thrombosis (pulmonary, coronary)

See 3010 Universal Pulseless Arrest Considerations for additional pulseless arrest guidelines, including:
- Compressions
- Defibrillation
- Ventilations
- Airway
- ROSC
UNIVERSAL PULSELESS ARREST CONSIDERATIONS

ADULT PATIENT

Compressions
- Minimize interruptions, resume compressions immediately after shocks, rhythm checks
- Push hard (≥ 2 inches) and fast (100-120/min) and allow complete chest recoil
- If available, use metronome to monitor compression rate
- If using automated CPR devices, use manufacturer’s specifications

Defibrillation
- Use adult electrode pads
- Follow AED prompts

Ventilations
- Open the airway, place NPA/OPA, place NRB facemask with O₂ at 15 L/min
- After 3 cycles (6 minutes), ventilate every 10 compressions, without pausing compressions
- Do not overventilate

Airway
- ALS may place an advanced airway (iGel, ETT)
- ETT is preferred for adults

ROSC
- Pulse and blood pressure
- Sustained abrupt rise in ETCO₂, typically > 40

PEDIATRIC PATIENT

Compressions
- Minimize interruptions, resume compressions immediately after shocks, rhythm checks.
- Push hard (≥ 1/3 of anteroposterior chest diameter) and fast (100-120/min) and allow complete chest recoil
- If available, use metronome to monitor compression rate

Defibrillation
- Use pediatric electrode pads
- Follow AED prompts

Ventilations
- Open the airway, place NPA/OPA, ventilate every 10 compressions, without pausing compressions
- Do not overventilate

Airway
- BVM preferred for all pediatric patients
- ALS may place an advanced airway (iGel or ETT) if BVM ventilations are inadequate

ROSC
- Pulse and blood pressure
- Sustained abrupt rise in ETCO₂, typically > 40

Regarding where to work arrest and presence of family members:
- In general, work cardiac arrest on scene either to return of spontaneous circulation (ROSC), or to field pronouncement, unless scene unsafe
- Family presence during resuscitation is preferred by most families, is rarely disruptive, and may help with grieving process for family members. Family presence during resuscitation is recommended, unless disruptive to resuscitation efforts
- **ALS assessment is indicated** prior to termination of resuscitation

ICD/Pacemaker patients
- If cardiac arrest patient has an implantable cardioverter defibrillator (ICD) or pacemaker: place defib pads at least 1 inch from device. Biaxillary or anterior posterior pad placement may be used
General Considerations
(From 2015 AHA Guidelines)
- Initial resuscitation steps should be completed within 60 seconds as illustrated
- The decision to progress beyond initial steps is based on an assessment of respirations (apnea, gasping, labored, or unlabored breathing) and heart rate (>100 bpm)

Assisting Ventilations
- Assist ventilations at a rate of 40-60 breaths per minute to maintain HR > 100
- Use 2 person BVM when possible

Chest Compressions
- Indicated for HR < 60 despite adequate ventilation w. supplemental O₂ for 30 seconds
- 2 thumbs-encircling hands technique preferred
- Allow full chest recoil
- Coordinate with ventilations so not delivered simultaneously
- 3:1 ratio for compressions to ventilations

NEONATAL RESUSCITATION

1. **Term Gestation?**
 - **Breathing or crying?**
 - **Good flex or tone?**
 - No
 - Warm, clear airway if necessary, dry, stimulate
 - ALS assessment is indicated

2. **HR <100, gasping or apnea**
 - Yes
 - PPV
 - **HR <100?**
 - Yes
 - Take ventilation corrective steps
 - Consider:
 - Hypovolemia
 - Pneumothorax
 - No
 - **HR <60?**
 - Yes
 - Chest compressions Coordinate w. PPV
 - No
 - **HR <60 after 60 seconds of chest compressions?**
 - Yes
 - Continue resuscitation

3. **Labored breathing or persistent cyanosis?**
 - Yes
 - Clear airway
 - Post resuscitation care
 - No

Routine Care:
- Provide warmth
- Clear airway if necessary
- Dry
- Ongoing evaluation
- ALS assessment is indicated
POST-RESUSCITATION CARE WITH ROSC

Post-Cardiac Care
- Following ROSC, several simultaneous and stepwise interventions must be performed to optimize care and maximize patient outcome.
- Survival and neurologic outcome worsen with fever, hypoxia, and hypotension. Post-ROSC care should focus on prevention of these elements.

Return of spontaneous circulation (ROSC) criteria:
- Pulse and measurable blood pressure

Document:
- Time of arrest (or time last seen normal)
- Witnessed vs. unwitnessed arrest
- Initial rhythm shockable vs. non-shockable
- Bystander CPR given
- Time of ROSC
- GCS after ROSC
- Initial temperature of patient

ROSC after cardiac arrest
- ABCs
- Assess vital signs
- Assess for shock
- Oxygenation/Ventilation
 - Avoid hyperventilation
 - Correct hypoxemia
- Elevate head of bed 30°

Is there hypotension for age and/or signs of shock?
- Continuous pulse checks
- Focused neuro exam (AVPU/GCS)
- Avoid fever and provide passive cooling

ALS assessment is indicated

Yes
Medical Shock protocol

No
CheST Pain, Possibly Cardiac

Before treating cardiac chest pain, consider non-cardiac causes.
- While assessing ABCs give supplemental oxygen and monitor vital signs
- Administer aspirin if history suggests possible cardiac chest pain
- Confirm ALS is responding

Assist with patient prescribed nitroglycerin if suspected cardiac chest pain and no contraindication, Contact Base for verbal order

Non-cardiac causes of chest pain:
- Can include: trauma, pulmonary, anxiety
- If etiology is unclear, Contact Base for guidance

Contraindications:
- Hypotension SBP < 100
- Use of erectile dysfunction (ED) medication (e.g. Viagra, Cialis)

Causes of Chest Pain in Children:
- Costochondritis
- Pulmonary Causes
- Ischemia Is rare but can be seen with a history of Kawasaki's disease with coronary aneurysms
- Cyanotic or Congenital Heart Disease
- Myocarditis
- Pericarditis
- Arrhythmia
- Anxiety
- Abdominal Causes

Reassess vital signs between nitroglycerin administrations. For hypotension following nitroglycerin, do not give additional doses.

Assist with 12 lead EKG placement, at direction of ALS provider
Scene Considerations:
- Locate and document all patient medications, whenever possible
- Locate medical paperwork (e.g., DNR, hospital discharge instructions)
- Note and document drug and alcohol paraphernalia
- Note and document scene conditions (e.g., patient location on arrival, general living conditions, notable belongings)

GENERAL MEDICAL CARE

- BSI
- Scene safety
- Consider nature of illness
- Consider need for additional resources

- General impression
- Level of Consciousness (AVPU)
- Assess and manage ABCs
- Administer O₂, if indicated

- Rapid Medical Assessment
- Obtain a complete set of vital signs

- SAMPLE history
- Complete secondary assessment, as indicated

Etiologies of Shock:
- Dysrhythmia, myocardial ischemia
- Sepsis
- Hemorrhage
- Anaphylaxis
- Overdose
- Cyanide or carbon monoxide poisoning
- Other: PE, MI, tension pneumothorax

Hypotension for Age

<table>
<thead>
<tr>
<th>Age</th>
<th>Blood Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td><1 year</td>
<td><70 mmHg</td>
</tr>
<tr>
<td>1-10 years</td>
<td><70 + (2 x age in years)</td>
</tr>
<tr>
<td>>10 years</td>
<td><90 mmHg</td>
</tr>
</tbody>
</table>

Tachycardia for Age

<table>
<thead>
<tr>
<th>Age</th>
<th>Heart Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td><1 year</td>
<td>>160 bpm</td>
</tr>
<tr>
<td>1-2 years</td>
<td>>150 bpm</td>
</tr>
<tr>
<td>2-5 years</td>
<td>>140 bpm</td>
</tr>
<tr>
<td>5-12 years</td>
<td>>120 bpm</td>
</tr>
<tr>
<td>>12 years</td>
<td>>100 bpm</td>
</tr>
</tbody>
</table>

Hypotension for age and/or signs of poor perfusion

- If possible, position supine
- Consider etiology of shock state

ALS assessment is indicated
SYNCOPE

- Assess and stabilize ABCs
- Administer O₂, if indicated
- Complete set of vital signs
- Perform and document neurologic exam

Consider etiology

ALS assessment is indicated

** Causes of Syncope:**

- Cardiac
 - Structural heart disease (eg. valvular disorder, heart failure, myocardial infarct)
 - Arrhythmia
- Seizure
- Hypovolemia
 - Dehydration
 - Blood loss
 - Pregnancy/ectopic
- Pulmonary Embolism
- Vasovagal

General Information:

- Syncope is defined as transient loss of consciousness accompanied by loss of postural tone.
- A syncopal episode will generally be very brief and have a rapid recovery with no postictal confusion.
- Convulsive movements called myoclonic jerks may occur with syncope. This is often confused with seizures, but should not be accompanied by a post-ictal phase, incontinence or tongue biting.
- Elderly syncope has a high risk of morbidity and mortality

Pediatric Considerations:

- Life-threatening causes of pediatric syncope are usually cardiac in etiology (arrhythmia, cardiomyopathy, myocarditis, or previously unrecognized structural lesions)
- In addition to the causes listed above, consider the following in the pediatric patient:
 - Seizure
 - Breath holding spells
 - Toxins (marijuana, opioids, cocaine, CO, etc.)
 - Important historical features of pediatric syncope include: color change, seizure activity, incontinence, post-ictal state, and events immediately prior to syncope event
 - Heat intolerance
 - BRUE (Brief Resolved Unexplained Events, formerly ALTE)
Definitions:
- **Anaphylaxis**: severe allergic reaction that is rapid in onset and potentially life-threatening. Multisystem signs and symptoms are present including skin and mucus membranes
 - **Mainstay of treatment is epinephrine**
 - **Angioedema**: deep mucosal edema causing swelling of mucus membranes of upper airway. May accompany hives
 - **Epinephrine indicated for any impending airway obstruction.**
- **Document**:
 - History of allergen exposure, prior allergic reaction and severity, medications or treatments administered prior to EMS assessment
 - Specific symptoms and signs presented: itching, wheezing, respiratory distress, nausea, weakness, rash, anxiety, swelling of face, lips, tongue, throat, chest tightness, etc.

ALLERGY AND ANAPHYLAXIS

Generalized or Systemic Reaction
Multisystem involvement: skin, mucus membranes, and gastrointestinal symptoms

- Does patient have any of the following signs or symptoms?
 - Hypotension
 - Signs of poor perfusion
 - Wheezing, stridor
 - Altered mental status

 No
 - ALS assessment is indicated

 Yes
 - Assist patient with prescribed **Epinephrine Auto-Injector**

- **Monitor ABCs**
- **Reassess for signs of deterioration**
- **ALS assessment is indicated**

Localized Reaction
Including isolated tongue, airway

- **Airway involvement?**
 - Tongue or uvula swelling, stridor
 - **Yes**
 - Impending airway obstruction?
 - **No**
 - Assist patient with prescribed **Epinephrine Auto-Injector**
 - **Yes**
 - Assist patient with prescribed **Epinephrine Auto-Injector**

History of allergen exposure, prior allergic reaction and severity, medications or treatments administered prior to EMS assessment
SUSPECTED CARBON MONOXIDE EXPOSURE

General Guidelines:

- **Signs and Symptoms of CO exposure include:**
 - Headache, dizziness, coma, altered mentation, seizures, visual changes, chest pain, tachycardia, arrhythmias, dyspnea, N/V, “flu-like illness”
 - The absence or low readings of COHb is not a reliable predictor of toxicity of other fire byproducts.
 - The fetus of a pregnant woman is at higher risk due to the greater affinity of fetal hemoglobin to CO. With CO exposure, the pregnant woman may be asymptomatic while the fetus may be in distress. In general, pregnant patients exposed to CO should receive ALS assessment.
 - Cigarette smokers’ COHb is normally higher than nonsmokers; >10% is clinically significant.

<table>
<thead>
<tr>
<th>COHb</th>
<th>Severity</th>
<th>Signs and Symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td><15-20%</td>
<td>Mild</td>
<td>Headache, nausea, vomiting, dizziness, blurred vision</td>
</tr>
<tr>
<td>21-40%</td>
<td>Moderate</td>
<td>Confusion, syncope, chest pain, dyspnea, tachycardia, tachypnea, weakness</td>
</tr>
<tr>
<td>41-59%</td>
<td>Severe</td>
<td>Dysrhythmias, hypotension, cardiac ischemia, palpitations, respiratory arrest, pulmonary edema, seizures, coma, cardiac arrest</td>
</tr>
<tr>
<td>>60%</td>
<td>Fatal</td>
<td>Death</td>
</tr>
</tbody>
</table>
EPISTAXIS MANAGEMENT

Active nosebleed

ABCs

- Tilt head forward
- Have patient blow nose to expel clots

Spray the affected naris(es) with phenylephrine
- Compress nostrils with clamp or fingers, pinching over fleshy part of nose, not bony nasal bridge
- Leave in position of comfort, usually sitting upright

If signs of hypoperfusion/shock, **ALS assessment is indicated.**

General Guidelines:

- Most nose bleeding is from an anterior source and may be easily controlled.
- Avoid phenylephrine in pts with known heart disease (CAD).
-抗血栓药物如阿司匹林、氯吡格雷（Plavix）、华法林（Coumadin）会使得鼻出血更难控制。注意你的患者是否正在使用这些或其他抗凝药物。
- Posterior epistaxis is a true emergency and will require advanced ED techniques such as balloon tamponade or interventional radiology. **ALS assessment is indicated.** Be prepared for potential airway issues.
- For patients on home oxygen via nasal cannula, place the cannula in the patient’s mouth while nares are clamped or compressed for nosebleed.
DROWNING

Specific Information Needed:
- Length of submersion
- Degree of contamination of water
- Water temperature
- Diving accident and/or suspected trauma

ABCs

Spinal Immobilization before moving patient if trauma suspected

Assess mental status

Awake and alert
- Remove wet garments, dry and insulate patient
- Monitor ABCs, VS, mental status
- Even if initial assessment normal, ALS assessment is indicated

Awake but altered LOC
- Remove wet garments, dry and insulate patient
- Suction as needed
- Give oxygen
- Monitor ABC, VS, mental status
- ALS assessment is indicated

Comatose or unresponsive
- Pulse Present?

Pulse Present?

No
- Pulse Present?

Yes
- Remove wet garments, dry, and insulate patient
- Heimlich maneuver NOT indicated
- Consider all causes of Altered Mental Status
- Suction as needed
- Give oxygen
- Monitor ABC, VS, mental status
- ALS assessment is indicated

Start CPR, attach AED, and treat per Universal Pulseless Arrest Algorithm with the following changes:
- Handle very gently
- Insulate patient

ALS assessment is indicated

- Drowning/submersion commonly associated with hypothermia.
- Even profound bradycardias may be sufficient in setting of severe hypothermia and decreased O₂ demand
- Good outcomes after even prolonged hypothermic arrest are possible, therefore patients with suspected hypothermia should always receive an ALS assessment.
- Pulse and respirations may be very slow and difficult to detect if patient is severely hypothermic. If no definite pulse, and no signs of life, begin CPR.
- If not breathing, start rescue breathing.
- Delayed pulmonary edema may occur after drowning.
• Even profound bradycardias may be sufficient in setting of severe hypothermia and decreased O₂ demand
• Good outcomes after even prolonged hypothermic arrest are possible, therefore patients with suspected hypothermia should receive ALS assessment
• Pulse and respirations may be very slow and difficult to detect if patient is severely hypothermic. If no definite pulse, and no signs of life, begin CPR
• If not breathing, start rescue breathing
Hyperthermia

Consider other causes of hyperthermia besides environment exposure, including:

- Neuroleptic malignant syndrome (NMS): patients taking antipsychotic medications
- Sympathomimetic overdose: cocaine, methamphetamine
- Anticholinergic toxidrome: overdose ("Mad as a hatter, hot as a hare, blind as a bat, red as a beet") common w. ODs on psych meds, OTC cold medications, Benadryl, Jimson weed, etc.
- Infection: fever (sepsis)
- Thyrotoxicosis: goiter (enlarged thyroid)

Heat Cramps
- Normal or slightly elevated body temperature
- Warm, moist skin
- Generalized weakness
- Diffuse muscle cramping
- Monitor VS
- ALS assessment is indicated

Heat Exhaustion
- Elevated body temperature
- Cool, diaphoretic skin
- Generalized weakness
- Anxiety
- Headache
- Tachypnea
- Possible syncope

Heat Stroke
- Very high core body temperature
- Hot, dry skin w. cessation of sweating
- Hypotension
- Altered mental status
- Seizure
- Coma

Adequate airway and breathing?

No
- Assist ventilations and manage airway, as needed

Yes
- Administer O2
- Remove excess clothing
- For heat stroke, consider external cooling measures if time allows
- Treat seizures, per protocol
- Monitor ABCs, VS, and mental status
- ALS assessment is indicated
GENERAL TRAUMA CARE

- BSI
- Scene safety
- Consider mechanism
- Consider need for additional resources

General impression
- Level of Consciousness (AVPU)
- Assess and manage ABCs
- Administer O₂, if indicated

Rapid Trauma Assessment

Control Exsanguinating Hemorrhage:
- Direct pressure
- Tourniquet protocol if indicated
- Pelvic stabilization if suspected unstable pelvis based on physical exam

Assess Disability and Limitation:
- Brief neuro assessment
- Extremity splinting if indicated

Continue to monitor ABCs, vital signs, and neurologic status (AVPU and GCS)

<table>
<thead>
<tr>
<th>Age</th>
<th>Blood Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td><1 year</td>
<td><70 mmHg</td>
</tr>
<tr>
<td>1-10 years</td>
<td><70 + (2 x age in years)</td>
</tr>
<tr>
<td>>10 years</td>
<td><90 mmHg</td>
</tr>
</tbody>
</table>

Hypotension for Age

<table>
<thead>
<tr>
<th>Age</th>
<th>Heart Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td><1 year</td>
<td>>180 bpm</td>
</tr>
<tr>
<td>1-2 years</td>
<td>>150 bpm</td>
</tr>
<tr>
<td>2-5 years</td>
<td>>140 bpm</td>
</tr>
<tr>
<td>5-12 years</td>
<td>>120 bpm</td>
</tr>
<tr>
<td>>12 years</td>
<td>>100 bpm</td>
</tr>
</tbody>
</table>

Tachycardia for Age

If patient appears unstable, consider traumatic shock:
- ALS assessment is indicated
- Prepare for immediate transport
- Keep patient warm

Pediatric Shock

Signs of Compensated Shock
- Normal mental status
- Normal systolic blood pressure
- Tachycardia
- Prolonged (>2 seconds) capillary refill
- Tachypnea
- Cool and pale distal extremities
- Weak peripheral pulse

Signs of Decompensated Shock
- Decrease in mental status
- Weak central pulses
- Poor color
- Hypotension for age
TRAUMA IN PREGNANCY

Pregnant Trauma (EGA < 20 weeks)

- Priority is mother.
- All patients with any thoracic, abdominal, or pelvic injury or complaint should receive ALS assessment.

Estimated Gestational Age (EGA)

If EGA ≥ 20 weeks, consider two patients: mother and fetus. Estimation of gestational age may be made based on fundal height by palpating for top of uterus:

If uterus is at umbilicus then EGA > 20 weeks

Estimation by Last Menstrual Period:
Due Date = LMP + 9 months + 7 days
EGA = current date - date of last menstrual period
If available, utilize pregnancy wheel to determine EGA.

Pregnant Trauma (EGA ≥ 20 weeks)

- Priority is mother.
- ALS assessment is indicated.
- Assure ALS is aware of pregnancy and EGA

Patients with any thoracic, abdominal, or pelvic complaint or injury may require prolonged fetal monitoring in hospital, even if asymptomatic at time of evaluation, and even for seemingly minor mechanism

- Avoid supine position:
 - Place in left lateral recumbent position if possible
 - If immobilized, tilt backboard 15 to 30 degrees to the left side

Interpret VS with caution. Pregnant patient has:
- Increased heart rate
- Decreased blood pressure
- Increased blood volume

See General Trauma Care protocol
Directed Trauma Care Protocol

Are there obvious signs of death OR the presence of non-survivable injuries? (SEE BELOW)

Yes → Contact Base for Consideration of Field Pronouncement

No → Consider MOI

(isolated GSW to head treated similar to blunt trauma)

Blunt Trauma

Unwitnessed arrest? (At no point definite signs of life in field)

Yes → Contact Base for consideration of Field Pronouncement

No → Penetrating Trauma

ALS assessment is indicated
• Initiate chest compressions with O2 administration and ventilations, if indicated
• Treat injuries per protocol
• Prepare patient for rapid transport

Non-survivable Injuries
• Decapitation
• 90% 3rd burns
• Evidence of massive blunt head, chest, or abdominal trauma

Document:
• General impression
• Mechanism: blunt vs. penetrating
• Time and duration of arrest
• Were vital signs present at any time?
AMPUTATIONS

General Trauma Care Protocol

Complete Amputation

Apply tourniquet without delay

- If hypotensive, treat for traumatic shock
- Document neurovascular exam

Partial Amputation

Life-threatening bleeding

- Control with direct pressure to bleeding area or vessel
- Apply tourniquet if bleeding not controlled with direct pressure

Non-Life-threatening bleeding

- Cover with moist sterile dressing
- Splint near-amputated part in anatomic position

Amputated part:
- Wrap in moist, sterile dressing
- Place in sealed plastic bag
- Place bag in ice water
- Do not freeze part

Stump:
- Cover with moist sterile dressing covered by dry dressing

Partial Amputation:
- Cover with moist sterile dressing
- Splint near-amputated part in anatomic position

ALS assessment is indicated
- Prepare patient for rapid transport
- Treat other injuries per protocol
HEAD TRAUMA PROTOCOL

General Trauma Care protocol

GCS < 8 or comatose?

Yes

Open airway and assist ventilations, if indicated

No

Assess for hypotension and/or signs of shock and treat per Traumatic Shock protocol

- Support ventilations PRN
- Decrease ICP by elevating head 30° if possible. Use reverse Trendelenburg if spinal precautions needed
- Complete Rapid Trauma Assessment
- Treat other injuries per protocol

ALS assessment is indicated
- Prepare patient for rapid transport
- Monitor ABCs, VS, mental status

Glasgow Coma Score (GCS)
(Minimum 3, Maximum 15)

Eyes:
1. Does not open eyes
2. Opens eyes to pain
3. Opens eyes to voice
4. Opens eyes spontaneously

Verbal:
1. No sounds
2. Incomprehensible sounds
3. Inappropriate words
4. Confused, disoriented
5. Oriented

Motor:
1. No movement
2. Extension to painful stimuli
3. Flexion to painful stimuli
4. Withdrawal to painful stimuli
5. Localizes to painful stimuli
6. Obey commands

Pediatric GCS
(Minimum 3, Maximum 15)

Eyes:
1. Does not open eyes
2. Opens eyes to pain
3. Opens eyes to voice
4. Opens eyes spontaneously

Verbal:
1. No vocal response
2. Inconsolable, agitated
3. Inconsistently consolable, moaning.
4. Cries but consolable, inappropriate interactions.
5. Smiles, oriented to sounds, follows objects, interacts

Motor:
1. No motor response.
2. Extension to pain.
3. Flexion to pain.
5. Localizes pain.
6. Obey Commands.
FACE AND NECK TRAUMA

General Trauma Care Protocol

- Clear airway
- Rapid trauma assessment
- Spinal Precautions Protocol
- Assess for need for airway management

Severe airway Bleeding?

Yes

Direct pressure if appropriate

No

- Complete neuro exam
- Assess for subcutaneous air
- Cover/protect eyes as indicated
- Do not try to block drainage from ears, nose
- Save avulsed teeth in saline-soaked gauze, do not scrub clean

ALS assessment is indicated

- Prepare patient for rapid transport
- Treat other injuries per protocol
- Suction airway as needed

Monitor ABCs, VS, mental status

Spinal precautions not routinely indicated for penetrating neck injury

Penetrating injury is very rarely associated with unstable spinal column
Patient with signs of traumatic acute spinal cord injury

General Trauma Care protocol

- Full spinal precautions if any neurological signs and symptoms consistent with a spine injury are present
- Document neuro assessments before and after immobilization

- ALS assessment is indicated
 - Prepare patient for rapid transport

If hypotension and/or signs of shock, treat for Traumatic Shock

- Complete patient assessment
- Treat other injuries per protocol
- Monitor for status changes

Monitor ABCs, VS, mental status

Signs of Spinal Cord Injury:
- Sensory loss, weakness and/or paralysis
- Typically bilateral, but may be asymmetrical
- Sensory changes typically have a level, corresponding to the level of the injury
- Numbness, tingling or painful burning in arms, legs
- **Central cord syndrome** is an incomplete spinal cord injury and causes painful burning or sensory changed in shoulders and upper extremities bilaterally and spares the lower extremities. It may be subtle

Spinal Immobilization not routinely indicated for penetrating neck injury

Penetrating injury is very rarely associated with unstable spinal column
SPINAL PRECAUTIONS PROTOCOL

Does patient have/complain of any of the following:
• Midline C/T/L spine tenderness on palpation
• Neurologic complaints or deficits
• Other injuries which are potentially distracting
• Alteration in mentation or under influence of drugs or EtOH
• Barrier to evaluate for spinal injury (e.g. language or developmental barrier)

Yes
No

Place c-collar on patient and ask them to not move neck

If NONE of above criteria, and you think patient is not likely to have a spinal injury, no spinal precautions required

Is there an objective neurological deficit?

No

Is the patient ambulatory on scene at time of BLS provider arrival?

Yes

Is the patient able to comfortably lay still and comply with instructions?

No

Full spinal immobilization

Yes

Patient may remain, with c-collar, in a position of comfort until ALS arrival

Notes:
• Backboards have not been shown to be any benefit for spinal injuries, and may cause harm.
• Backboards/scoops are useful tools for carrying non-ambulatory patients to a gurney. Patients who do not need a backboard should be gently slid off of backboard/scoop onto gurney.
• Self-extrication from a vehicle with assistance is likely better than standard extrication procedures.
• Vacuum mattresses should be used preferentially over a backboard if readily available.
• Use caution when assessing for spinal injury in elderly patients, who are at much higher risk and may have minimal symptoms.
• Consider improvised cervical spine immobilization such as towel rolls and tape or a SAM splint if needed to prevent airway compromise or worsening spinal injury if the rigid cervical collar cannot be correctly sized to the patient.
• Neurological exam documentation is MANDATORY in patients with potential spinal trauma, including serial exams.
• Cervical collar is not indicated in isolated penetrating trauma.
• Full spinal immobilization includes backboard, scoop, vacuum splint, or agency approved device.
CHEST TRAUMA

- General Trauma Care protocol
- ALS assessment is indicated

- Administer O2 and support ventilations, if indicated
- Prepare patient for rapid transport

Penetrating trauma?

Yes: For open sucking chest wounds - 3 sided occlusive dressing or agency approved device

No

Flail Chest?

Yes: Assess need for assisted ventilations

No

Hypotension for age?

Yes: Treat per Traumatic Shock protocol

No

Monitor ABCs, VS, mental status
ABDOMINAL TRAUMA

- General Trauma Care protocol
- ALS assessment is indicated

Prepare for rapid transport

Penetrating trauma?

Yes → Cover wounds, viscera with saline moistened gauze dressing

No → Do not attempt to repack exposed viscera

Hypotension for age?

Yes → Treat per Traumatic Shock protocol

No → Monitor ABCs, VS, mental status

Documentation
- MOI
- Time of injury
- Initial GCS
- Penetrating trauma
 - Weapon/projectile/trajectory
- Blunt vehicular trauma
 - Condition of vehicle
 - Speed
 - Ejection
 - Airbag deployment
 - Restraints, helmets
BURNS

- **General Trauma Care protocol**
- **ALS assessment is indicated**

Stop burning process:
- Remove clothes if not adhered to patient’s skin
- Flood with water only if flames/smoldering present

Respiratory Distress hoarseness or stridor?
- Yes
 - Administer O₂
 - Manage airway and assist ventilations as indicated
 - Consider CO, CN
- No

Evaluate degree and body surface are involved
- Remove rings, jewelry, constricting items
- Dress burns with dry sterile dressings
- Treat other injuries per protocol
- Cover patient to keep warm

Document:
- Type and degree of burn(s)
- % BSA
- Respiratory status including any voice changes (hoarseness)
- Singed nares, soot in mouth
- PMHx
- Confined space (assume CO)

Types of Burns:
- Thermal: remove from environment, put out fire
- Chemical: brush off or dilute chemical. Consider HAZMAT
- Electrical: make sure victim is de-energized and suspect internal injuries
- Assume CO if enclosed space
- Consider cyanide poisoning (CN) if unconscious or pulseless arrest

- Prepare for rapid transport
- Monitor ABCs, VS, mental status
GENERAL GUIDELINES: PEDIATRIC PATIENTS

General Principles:
For the purpose of the protocols, pediatric patients are defined as <14 years of age. The unique anatomy, physiology and developmental needs of children in this age range affect prehospital care. Several specific differences include:

A. Airways are smaller, softer and easier to obstruct or collapse. Actions such as neck hyperflexion, hyperextension, or cricoid pressure may create an upper airway obstruction in a child.
B. Respiratory reserves are small, resulting in the possibility of rapid desaturation in the setting of increased demand. One of the earliest signs of physiologic stress in a child may be an unexplained increase in respiratory rate.
C. Infants and young children utilize their abdominal musculature to assist with respirations. Tight, abdominally-placed straps used to secure children may result in onset of or worsening respiratory distress.
D. Circulatory reserves are small. The loss of as little as one unit of blood can produce severe shock in an infant.
E. The developmental stage of a child impacts his/her ability to cooperate. The perception and memory of pain is escalated by anxiety. Discuss or forewarn what will be done with any child over 2 years of age. Infants, especially those under 6 months of age, tolerate painful procedures better if allowed to suck on a pacifier during the procedure. Utilize the parent or familiar guardian whenever possible to distract/comfort (tell a story, sing a song, etc.) for all pediatric patients during painful procedures.

Children with special health care needs:
Treat the child, not the equipment. Starting with the ABCs still applies to medically complicated or medical technology-assisted children.

A. The parent/guardian of a special needs child is the expert on that child and knows the details of that illness, typical responses, and baseline interactions better than anyone. Utilize and trust his/her knowledge and concerns. This may include vital signs, medication responses, or physical positioning (i.e. of contracted limbs) that may not be typical.
B. Medically complicated children are often given healthcare notes describing their unique medical history and emergency healthcare needs. Ask the parent/guardian for an emergency information sheet, emergency healthcare form, or QR code.
C. Ask the parent/guardian for the "go bag" for medical technology-assisted children. This will contain the child’s spare equipment and supplies that may be needed on scene, during transport or in the hospital.
Respiratory Distress

For all patients:
While assessing ABCs: give supplemental O₂ and monitor vital signs

Patent Airway?

Are ventilations adequate for age?

Is anaphylaxis likely?

Is there a barky cough and stridor?

Is there wheezing?

- Provide supportive care
- Maximize oxygenation and ventilation
- CONTACT BASE if needed for consult
- ALS assessment is indicated

Obstructed Airway protocol

Assist ventilations at age-appropriate rate with BVM and airway adjuncts as needed

Allergy/Anaphylaxis protocol

Pediatric Stridor/Croup protocol

Pediatric Wheezing protocol

Age-appropriate ventilation rate in respiratory failure:

<table>
<thead>
<tr>
<th>Age</th>
<th>Breaths/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neonate</td>
<td>40</td>
</tr>
<tr>
<td>Infants</td>
<td>30</td>
</tr>
<tr>
<td>Children</td>
<td>20</td>
</tr>
</tbody>
</table>

Assisted ventilation rates listed do not apply to the patient in cardiac arrest

Characteristics of Stridor:
- High-pitched, harsh sound most often heard on inspiration
- Occurs with upper airway restriction
- Significant restriction may result in biphasic stridor (heard on inspiration and expiration)

Consider pulmonary and non-pulmonary causes:
- Foreign body
- Croup
- Pneumonia
- Bronchiolitis
- Pulmonary embolism
- Sepsis
- Metabolic derangement
- Anxiety
PEDIATRIC WHEEZING

Consider the cause of wheezing before initiating specific therapy

Initial best indicator is age. If patient ≤ 2 years old, bronchiolitis is most likely. Age > 2 reactive airways disease is more likely.

Age ≤ 2 years old
Bronchiolitis most common

- Viral illness characterized by fever, copious secretions and respiratory distress typically seen November through April
- Most important interventions are to provide supplemental oxygen and suction secretions adequately
- Bronchodilators and steroids do not work

- Nasal suction
- Place in position of comfort
- Monitor RR, retractions, mental status

If worsening respiratory distress despite above therapies, re-suction nostrils and assist ventilations with BVM

ALS assessment is indicated

Age > 2 years old
Asthma most common

Presentation suggests asthma:
- Wheezing, prolonged expiratory phase, decreased breath sounds, accessory muscle use, known hx of asthma or albuterol use

- EMT may administer either MDI or nebulized albuterol with base contact for verbal order

Is response to treatment adequate

No

- Assess for pneumothorax
- Assist ventilations with BVM

Yes

- Continue monitoring and assessment en route
- Be prepared to assist ventilations as needed
- Contact Base for medical consult if patient deteriorates
- ALS assessment is indicated
Characteristics of Croup:
- Most common cause of stridor in children
- Child will have stridor, barky cough, and URI symptoms of sudden, often nocturnal onset
- Most often seen in children < 9 years old
- Agitation worsens the stridor and respiratory distress

Considerations with Stridor:
- Stridor is a harsh, usually inspiratory sound caused by narrowing or obstruction of the upper airway
- Causes include croup, foreign body aspiration, allergic reactions, trauma, infection, mass
- Epiglottitis is exceedingly rare. May consider in the unimmunized child. Treatment is minimization of agitation. Airway manipulation is best done in the hospital.

Pediatric Universal Respiratory Distress Protocol
- Prepare for immediate transport
- Administer O₂

Minimize agitation:
- Place in position of comfort, interventions only as necessary

Are symptoms severe and croup most likely?
- Stridor at rest or biphasic stridor
- Severe retractions
- Altered LOC
- Cyanosis

If signs of poor perfusion AND/OR hypotension for age, see Medical Shock Protocol
- Continue monitoring and assessment
- Contact Base for medical consult as needed
- ALS assessment is indicated
DEFINITION:
An infant < 1 year of age with episode frightening to the observer characterized by apnea, choking/gagging, color change or change in muscle tone

Support ABCs as necessary

Obtain detailed history of event and medical history

Complete head-to-toe assessment

- Any child with an BRUE should receive an ALS assessment
- Monitor vital signs

Clinical history to obtain from observer of event:
- Document observer's impression of the infant's color, respirations and muscle tone
- For example, was the child apneic, or cyanotic or limp during event?
- Was there seizure-like activity noted?
- Was any resuscitation attempted or required, or did event resolve spontaneously?
- How long did the event last?

Past Medical History:
- Recent trauma, infection (e.g. fever, cough)
- History of GERD
- History of Congenital Heart Disease
- History of Seizures
- Medication history

Examination/Assessment
- Head to toe exam for trauma, bruising, or skin lesions
- Check anterior fontanelle: is it bulging, flat or sunken?
- Pupillary exam
- Respiratory exam for rate, pattern, work of breathing and lung sounds
- Cardiovascular exam for murmurs and symmetry of brachial and femoral pulses
- Neuro exam for level of consciousness, responsiveness and any focal weakness
CHILDBIRTH PROTOCOL

Overview:
- BLS providers called to a possible prehospital childbirth should determine if delivery is imminent
- If imminent, immediately prepare to assist with the delivery
- If no signs of imminent delivery, prepare patient for transport

Obtain obstetrical history (see adjacent)

If suspected imminent childbirth:
- Allow patient to remain in position of comfort
- Visualize perineum
- Determine if delivery is imminent

Imminent Delivery
Delivery is imminent if there is crowning or bulging of perineum

Emergency Childbirth Procedure
- If there is a prolapsed umbilical cord or apparent breech presentation, go to obstetrical complications protocol and prepare for immediate transport
- For otherwise uncomplicated delivery:
 - Position mother supine on flat surface, if possible
 - Do not attempt to impair or delay delivery
 - Support and control delivery of head as it emerges
 - Protect perineum with gentle hand pressure
 - Check for cord around neck, gently remove from around neck, if present
 - Suction mouth, then nose of infant as soon as head is delivered
 - If delivery not progressing, baby is “stuck”, see obstetrical complications protocol and prepare for immediate transport
 - As shoulders emerge, gently guide head and neck downward to deliver anterior shoulder. Support and gently lift head and neck to deliver posterior shoulder
 - Rest of infant should deliver with passive participation – get a firm hold on baby
 - Keep newborn at level of mother’s vagina until cord stops pulsating and is double clamped

Delivery not imminent
- Place patient in position of comfort, preferably on left side, while preparing for transport
- Monitor for progression to imminent delivery

Postpartum Care Infant
- Suction mouth and nose only if signs of obstruction by secretions
- Respirations should begin within 15 seconds after stimulating reflexes. If not, begin artificial ventilations at 30-40 breaths/min
- If apneic, cyanotic or HR < 100, begin neonatal resuscitation
- Dry baby and wrap in warm blanket
- After umbilical cord stops pulsating, double clamp 6” from infant abdominal wall and cut between clamps with sterile scalpel. If no sterile cutting instrument available, lay infant on mother’s abdomen and do not cut clamped cord
- Document 1 and 5 minute APGAR scores

Critical Thinking:
- Normal pregnancy is accompanied by higher heart rates and lower blood pressures
- Shock will be manifested by signs of poor perfusion
- Labor can take 8-12 hours, but as little as 5 minutes if high PARA
- The higher the PARA, the shorter the labor is likely to be
- High risk factors include: no prenatal care, drug use, teenage pregnancy, DM, htn, cardiac disease, prior breech or C section, preeclampsia, twins
- Note color of amniotic fluid for meconium staining

Postpartum Care Mother
- Placenta should deliver in 20-30 minutes. If delivered, collect in plastic bag and bring to hospital. Do not pull cord to facilitate placenta delivery and do not delay transport awaiting placenta delivery
- If the perineum is torn and bleeding, apply direct pressure with sanitary pads
- Postpartum hemorrhage – see obstetrical complications protocol

Specific Information Needed:
- Obstetrical history:
 - Number of pregnancies (GRAVIDA)
 - Live births (PARA)
 - Expected delivery date
 - Length of previous labors
 - Narcotic use in past 4 hours
OBSTETRICAL COMPLICATIONS

For All Patients with obstetrical complications
- ALS assessment is indicated
- Do not delay: prepare for immediate transport
- Give high-flow oxygen

Possible actions for specific complications (below)
- The following actions may not be feasible in every case, nor may every obstetrical complication be anticipated or effectively managed in the field. These should be considered “best advice” for rare, difficult scenarios. In every case, prepare for immediate transport and consult base for guidance.

Prolapsed Umbilical Cord
- Discourage pushing by mother
- Position mother in Trendelenberg or supine with hips elevated
- Place gloved hand in mother’s vagina and elevate the presenting fetal part off of cord until relieved by physician
- Feel for cord pulsations
- Keep exposed cord moist and warm

Breech Delivery
- Never attempt to pull infant from vagina by legs
- IF legs are delivered gently elevate trunk and legs to aid delivery of head
- Head should deliver in 30 seconds. If not, reach 2 fingers into vagina to locate infant’s mouth. Press vaginal wall away from baby’s mouth to access an airway
- Apply gentle abdominal pressure to uterine fundus
- IF infant delivered see childbirth protocol – Postpartum care of infant and mother

3rd Trimester Bleeding (6-8 months)
- High flow O₂ via NRB
- Suspect placental abruption or placenta previa
- Prepare for rapid transport
- Position patient on left side
- Note type and amount of bleeding

Eclampsia/Toxemia
- High flow O₂ via NRB
- SBP > 140, DBP > 90, peripheral edema, headache, seizure
- Place in position of comfort

Postpartum Hemorrhage
- Massage abdomen (uterine fundus) until firm
- Prepare for rapid transport
- Note type and amount of bleeding

Shoulder Dystocia
- Support baby’s head
- Suction oral and nasal passages
- DO NOT pull on head
- May facilitate delivery by placing mother with buttocks just off the end of bed, flex her thighs upward and gentle open hand pressure above the pubic bone
- IF infant delivered see childbirth protocol – Postpartum care of infant and mother
ALBUTEROL SULFATE (PROVENTIL, VENTOLIN)

Description
- Albuterol is a selective ß-2 adrenergic receptor agonist. It is a bronchodilator and positive chronotrope.

Onset & Duration
- Onset: 5-15 minutes after inhalation
- Duration: 3-4 hours after inhalation

Indications
- Bronchospasm

Contraindications
- Severe tachycardia is a relative contraindication

Adverse Reactions
- Tachycardia
- Palpitations
- Dysrhythmias

Drug Interactions
- Sympathomimetics may exacerbate adverse cardiovascular effects.
- ß-blockers may antagonize albuterol.

How Supplied
 - MDI: 90 mcg/metered spray (17-g canister with 200 inhalations)
 - Pre-diluted nebulized solution: 2.5 mg in 3 ml NS (0.083%)

Dosage and Administration

Adult, Base Contact Required:
 - Single Neb dose
 Albuterol sulfate solution 0.083% (one unit dose bottle of 3.0 ml), by nebulizer, at a flow rate (6-8 lpm) that will deliver the solution over 5 to 15 minutes. May be repeated twice (total of 3 doses).
 - Continuous Neb dose
 In more severe cases, place 3 premixed containers of albuterol (2.5 mg/3ml) for a total dose of 7.5 mg in 9 ml, into an oxygen-powered nebulizer and run a continuous neb at 6-8 lpm.

Pediatric, Base Contact Required:
 - Single Neb dose
 Albuterol sulfate solution 0.083% (one unit dose bottle of 3.0 ml), by nebulizer, at a flow rate (6-8 lpm) that will deliver the solution over 5 to 15 minutes. May be repeated twice with Base Contact between doses (total of 3 doses).

Protocol
- Adult Wheezing
- Pediatric Wheezing
- Allergy and Anaphylaxis
ASPIRIN (ASA)

Description
Aspirin inhibits platelet aggregation and blood clotting and is indicated for treatment of acute coronary syndrome in which platelet aggregation is a major component of the pathophysiology. It is also an analgesic and antipyretic.

Indications
- Suspected acute coronary syndrome

Contraindications
- Active gastrointestinal bleeding
- Aspirin allergy

How Supplied
Chewable tablets 81mg

Dosage and Administration
- 324mg PO

Protocol
- Chest Pain

Special Considerations
- Patients with suspected acute coronary syndrome taking warfarin (Coumadin), clopidogrel (Plavix) or novel oral anticoagulants may still be given aspirin.
EPINEPHRINE (ADRENALIN)

Description
Endogenous catecholamine alpha, beta-1, and beta-2 adrenergic receptor agonist. Causes dose-related increase in heart rate, myocardial contractility and oxygen demand, peripheral vasoconstriction and bronchodilation.

Indications
- Systemic Allergic Reaction (Anaphylaxis)

Adverse Reactions
- Tachycardia and tachydysrhythmia
- Hypertension
- Anxiety
- Can precipitate myocardial infarct (MI)

Dosage and Administration

Epinephrine Auto-Injector:
Systemic allergic reaction:
- Adult: 0.3 mg IM with patient’s prescribed auto-injector (adult EpiPen, Auvi-Q)
- Pediatric: 0.15 mg IM with patient’s prescribed auto-injector (EpiPen Jr., Auvi-Q)

Protocol
- [Allergy and Anaphylaxis Protocol](#)

Special Considerations
- Can increase myocardial oxygen demand and precipitate myocardial infarct (MI). Use with caution in patients with known or suspected heart disease (CAD).
NALOXONE (NARCAN)

Description
Naloxone is a competitive opioid receptor antagonist

Onset & Duration
Onset: Within 5 minutes
Duration: 1-4 hours

Indications
- For reversal of suspected opioid-induced CNS and respiratory depression
- Coma of unknown origin with impaired airway reflexes or respiratory depression

Adverse Reactions
- Tachycardia
- Nausea and vomiting
- Pulmonary Edema

Dosage and Administration
Adult:
For severe respiratory compromise or respiratory arrest: Administer 2mg IN via MAD (mucosal atomization device)

With **Base Contact**, repeat dose may be considered if no improvement in respiratory effort after 5 minutes of initial dose. Routine use of high dose Naloxone should be avoided.

Pediatrics:
Supportive care only (oxygenation and ventilation, as needed)

Special Considerations
- For all patients, ensure proper oxygenation and ventilation
- Not intended for use unless respiratory depression or impaired airway reflexes are present. Reversal of suspected mild-moderate opioid toxicity is not indicated in the field as it may greatly complicate treatment and transport as narcotic-dependent patients may experience violent withdrawal symptoms
- If patient does not respond to single dose, investigate other potential causes for respiratory compromise
- Patients receiving naloxone **must** receive **ALS assessment**
NITROGLYCERIN (NITROSTAT, NITROQUICK, etc)

Description
Short-acting peripheral venodilator decreasing cardiac preload and afterload

Onset & Duration
Onset: 1-3 min.
Duration: 20-30 min.

Indications
- Chest pain or discomfort due to suspected Acute Coronary Syndrome
- Patient is prescribed Nitroglycerin, and the Nitroglycerin is available on scene

Contraindications
- Hypotension SBP < 100
- Use of erectile dysfunction (ED) medication (e.g. Viagra, Cialis)

Adverse Reactions
- Hypotension
- Headache
- Syncope

Dosage and Administration
- **Base Contact Required** to assist the patient in self-administration of the patient's prescribed Nitroglycerin
- 0.4 mg sublingually, every 5 minutes PRN up to a total of 3 doses for persistent CP

Special Considerations
- Erectile dysfunction medications are prescribed to men and women for multiple conditions (e.g. pulmonary HTN)
Pharmacology and Actions

Glucose is the body’s basic fuel and is required of cellular metabolism. A sudden drop in blood sugar level will result in disturbances of normal metabolism, manifested clinically as decrease in mental status, diaphoresis and tachycardia. Further decreases in blood sugar may result in coma, seizures and cardiac arrhythmia. Serum glucose is regulated by insulin, which stimulates the storage of excess glucose from the body’s blood stream, and glucagon, which mobilizes stored glucose into the blood stream. The oral glucose paste is rapidly absorbed from oral mucosa, thus elevating the body’s blood glucose level.

Indications

A. Altered mental status and/ or
B. History of diabetes, and
C. Ability to swallow the medication

Precautions

Any patient who is unable to swallow may experience an airway obstruction or aspiration due to the gel.

Administration

A. The dosage of oral glucose is one full tube.
B. Squeeze a small portion of the tube into the patient’s mouth between the cheek and gum. Repeat procedure until one full tube of glucose has been administered.
C. Reassess vital signs and the patient’s condition.

Side Effects and Special Notes

A. There are no specific side effects if administered properly.
B. Due to the gel thickness, this is a potential for airway obstruction or aspiration if the patient has no gag reflex.
C. It is best to have suction available for administering oral glucose.
OXYGEN

Description
Oxygen added to inspired air increases the amount of oxygen in the blood, and thereby increases the amount delivered to the tissue. Tissue hypoxia causes cell damage and death. Breathing, in most people, is regulated by small changes in the acid-base balance and CO₂ levels. It takes relatively large decreases in oxygen concentration to stimulate respiration.

Indications
- Suspected hypoxemia or respiratory distress from any cause
- Acute chest or abdominal pain
- Hypotension/shock states from any cause
- Trauma
- Suspected carbon monoxide poisoning
- Obstetrical complications, childbirth

Precautions
- If the patient is not breathing adequately, the treatment of choice is assisted ventilation, not just oxygen.
- When pulse oximetry is available, titrate SpO₂ to ≥ 90%. This may take some time.
- Do not withhold oxygen from a COPD patient out of concerns for loss of hypoxic respiratory drive.
 This is never a concern in the prehospital setting with short transport times

Administration

<table>
<thead>
<tr>
<th>Flow</th>
<th>LPM Dosage</th>
<th>Indications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Flow</td>
<td>1-2 LPM</td>
<td>Minor medical / trauma</td>
</tr>
<tr>
<td>Moderate Flow</td>
<td>3-9 LPM</td>
<td>Moderate medical / trauma</td>
</tr>
<tr>
<td>High Flow</td>
<td>10-15 LPM</td>
<td>Severe medical / trauma</td>
</tr>
</tbody>
</table>

Special Notes
- Do not use permanently mounted humidifiers. If the patient warrants humidified oxygen, use a single patient use device.
- Adequate oxygenation is assessed clinically and with the SpO₂ while adequate ventilation is assessed clinically and with ETCO₂.
PHENYLEPHRINE (INTRanasAL)

Description
- Phenylephrine is an alpha adrenergic agonist. When administered intranasally, it causes vasoconstriction in the nasal mucosa and subsequently decreased bleeding and nasal decongestion.

Indications
- Nosebleed (epistaxis).

Precautions
- Avoid administration into the eyes, which will dilate pupil.
- Avoid administration in patients with known heart disease (CAD).

Dosage and Administration
- For patients with active nosebleed, first have patient blow nose to expel clots. Then, administer 2 sprays into affected naris(es).

Protocol
- Epistaxis